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it is easy to see that the integrands are bounded everywhere for 0 < 8 < n, 0 4 y < I. 

The first two members in the relationships (8) agree asymptotically, for 6 4 0. with the 

isolated singularity in the solutions in [1, 31. 
Example 2. Evidently the solution of the problem of compression of a sphere by 

concentrated forces applied to its poles r = I?, 6 = u and 8 = I[ is the superposition of 

two solutions of type (7), namely 

ur (r, 6):= Uro (r, 8) + ur* (r, 2s - 9) 

u, (r, e) = u8a (r, e) - ~~0 (r, x - 0) 

Thus the solution of the problem of deformation of a sphere by an axisymmetric nor- 

mal loading is represented by the quadratures of (4). (5). The advantage of this repre- 

sentation will be that it is valid even for loadings having a strong discontinuity of a 
concentrated force type. 
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A method of investigating the integral equation for the case when its kernel is a mero- 

morphic function with simple poles and double zeros, is presented. The integral equation 
is reduced to an infinite system of linear algebraic equations which normally has a solu- 

tion, and this solution is constructed together with that of a certain finite system. A gene- 
ral form of sufficient conditions which must be imposed on the right side of the equation 

to ensure that it has a unique solution, is derived. 
Mixed problems of the theory of elasticity on determination of stresses generated under 

a die impressed into an elastic layer lying without friction on a rigid founaation 111, and 
the problem concerning the stresses generated under a wheel with a tyre, fitted on an 
elastic shaft [2], both lead to an integral equation of the form 
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by 

(0.1) 

The kernel k(t) of the integral equation for the above problems is given, respectively, 

k(t) = ~K(u)COBUtdu. K(u) = 2sh”u 
u (sh 2u + 2~) (0.2) 

6 

K(u) = Z12 (4 
u’ [ Z$ (u) - z1* (u)] - 2 (1 -a) 11% (u) (0<~<0.5) 

where I,(z) and Ii(z) d enote modified Bessel functions of the zero and the first order. 
Equation (0.1) is dealt with in p-41 e. a. If K (u) is a rational function, a solution can, 
generally, be constructed for (0.1) ln a finite form ; this was established ln [4]. Paper [5] 
proposes a method of constructing an asymptotic solution for (0.1) at a 4 CC , under the 

assumption that K (u) is a meromorphic function with simple poles and zeros. This me- 
thod, however, beaks down when K (u) has multiple zeros. 

1. We shall assume that K(Z) is an even function, real on the real axis and emeromor- 

phic on the complex plane, with double zeros and simple poles not lying on the real axis 

and represented by the following asymptotic expression on the upper semiplane 

-i(Fjn+b)*c,Inn+O(n-‘Inn) 

i,“:,Pra +y)*c,Inn +O(r~-~lnn) 
(I~,l<l~nt,l~ (1 .I) 

(15,1b16n,,l) WA-) 

The constants entering (1.1) are real. 

We also assume that K(Z) has the following asymptotic property 

K(z)=c~z-~[~-~c(z'~+~(z'-~)], latex, Iargz&n/2I>e>O (1.2) 

We shall consider the functions of the form 

Each zero appearing ln the product (1.3) is a double one, and we can easily see that 

(1.4) 
Lemma 1.1. The following asymptotic estimates are correct : 

K,.(~)=~Z-O~~[lt_o(l)j, lzl-+~, Iwzrtx/21>e>fJ 

At large 1 z 1 the function K+ (z) can be approximated by a rational combination 

of the Euler’s gamma functions,henee the proof follows from (1.2). 

The requirement that relations of the form 

H+(- z,)=r%-i-~~[i +0(l)], [H+-‘(-zz,)]‘=ck~q1+o(l)] @-,m) 

0 < 71. Tz 6 6.5 (1.5) 
hold for the expressions 

I?+(--zz,)== lim K+(z) 
t+zk (2 + Zk)* ’ 

H,’ (- zk) = lim A- z;-rk c+z { (:$:;p} (W 

represents the last condition to be imposed on the function K(c). 
In the following we shall make use of certain information from the theory of integral 

equations of the first kind on a semiaxis. which have the form 
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If the kernel k(t) satisfies the above conditions, the results of Is, 7’) can be used to 

prove the following theorem. 

The ore m 1.1. Equation (1.7) has a unique solution in the class of functions a(z) 
such, that a(z)&s exp (- l=) E coo (O,=), 0 <p < inf (Im &, Im zt) 
for any right side of f(z) possessing the property (1.3) 

P (2)X+ exp(- p) E CoX (0, 00) (0.5 < x -a<*) (I -9) 

Here Cka(a, b) denotes a set of functions whose k th order derivatives satisfy the 

Hiilder condition with the index h. on [u, 61 . 
To prove this theorem we construct such normalizers n] of (1. ‘7) in the functional 

cp (r) -space, that z*# (z) E CO’ (0, cc). In addition, we establish in advance that the 

properties of the kernel described above are sufficient to regard the present space as 

a Krein space, in which some integral equation of the second kind on a semiaxis 
[6, 71 normally has a solution. 

2. The main result of the present paper follows. 

Theorem 2.1. Equation (0.1) has a unique solution in L,, (-a, 4) (p>l) for 

any right part f(t) E CIA (-a, a), h > 0.5 ; this solution can be written in the form 

O3 @(q) q(x)= $ -0 {wdq+ 5 {[Al++ (a+z)B,+]expizr(u+~)+ 

-00 f=l 7.2 

+ [Al-+(a- 5) Bl-l exp izl (a - 411, 
co 

Exact values of the coefficients Af and BP are obtained together with the solution 

of a certain finite system of algebraic equations. In addition, q(t) has the property 

&)(a2 - 22)s;” E CoO(-a, a) (2.2) 

Proof of this theorem wilI be preceded by a number of lemmas and theorems. 

In the following, c (a) (where o is an arbitrary real number) will denote a space of 
complex sentences (tr) = X possessing the pronew 

SUP, I PXl I < 00 3 lim Px, = 0 (2.3) 
l-+x, 

Obviously, c(o) is a Banach space provided that its norm is defined by 

1 x &(O) = SUP, I & I (2.4) 

Moreover, H(-a, 4) will denote a space of functions q(z) with the norm given by 

[q(z)b= (1 K(u)~Q(~)~~du)“‘<~, Q(U) = 1 q(z)eiUXdz (2.j) 
--co --Cl 

We note the following inclusion: 

Lp(- 6 4c H(- a, 4, f<P62 (2.6) 

It can easily be confirmed that K is an operator, positive definite in H(-a, a) . This 
enables us to prove the following assertion using the familiar methods [8j. 

Le m ma 2.1. Equation (1.1) has a unique solution in a(-u,u) if and only if the 
inequality 
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holds. 

(2.7) 
-m 

It can be shown that (2.7) holds, if 

‘p’z (a% - z?)~ E Co’ (-4, O<P<A<i (2.8) 

L e m m a 2.2. Series in (2.1) belong, as functions of z , to 

J% (-6 u), 1 <p ((1 - 4 -l, O<G<f 

provided that the properties 

{A,*) E c (4, (‘B,*j~c(o- 1), O<o<l 
take place. 

(2.9) 

(2.10) 

The lemma is easily proved by applying the biinkowski inequality to the infinite 
series (2.1). 

We shall seek the solution Q(Z) of (0.1) belonging to L,(--a, u) 1 <p < 2 in the 
form of a series (2.1). whose coefficients have the property (2.10). 

Theorem 2.1. For r+r(z) E c,” (- u, a) (A > 0.5) the equation (0.1) is equi- 

valent to an infinite system of algebraic equations of the form 

(2.11) 

xl* = Al+& A,-, 

yl’ - B1+i B,-, 
dq (r=i,z,...) 

{W E c (7% {Yl*:)Ec(r- IL rQ.5 (2.12) 

We begin by establishing the theorem for the case cp \z) - eirlX. The infinite system is 

constructed in the following manner. The kernel k (I) is represented in the form of a 

series by computing the integral (0.2) by the method of residues. The resulting series 
converges uniformly everywhere except at the point t = 0, where k (2) has a logarith- 
mic singularity. 

After this we insert the kernel k (z) and the solution q (z) taken in the form (2. l), 

with Q, (11) =, 6 (6 - rl) (6 (t) is the Dirac delta function), into Eq. (0.1) and integrate 

the result. By (1.1) the series (2.1) converges uniformly on any segment belonging to 
(-a, a). The points f u may be found to be singular, but by Lemma 2.2 they are inte- 

grable. 
This makes possible the assertion that the Dirichlet series obtained by integration, will 

converge uniformly for all 1 2 1 < i. 
In addition, when conditions (2.10) and (1.1) hold,this series turns out to be a function 

which can be analytically continued into the square 1 z ) -$ a, 1 y 1 < M (2 5 2 d- 4, 
M is an arbitrary fixed number). 

Transition from the Dirichlet series to the infinite system is carried out on the basis 
of the following result established by Leont’ev [9]. (p. 133). Let the complex numbers 6, 
be zeros of the entire function P (z), whose growth indicatrix is 
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? In I p (PC”4 I 
h(cp)=aIsiocp[, h(p)= bm 

P--o 
p 

Then, if the series 

Q (2) = 5 1 Ok exp tkz + bk exp ( - &‘)I 
k-l 

converges uniformly in the region o containing the whole of the segment z = 0, 1 y 16 
( u , the condition Q (z) s 0 in o implies that all (I& = bk = 0. By Lemma 2.1, the 
same fact can be used to establish the uniqueness of the solution of the system (2.11) in 

the space (2.12). Transition from the infinite system to the integral equation is effected 
in the reverse order. 

Lemma 2.3. Let 

z’f’ (2) E coa (0, 00 1, f(z) G 0 for 5 > N > 0, 0.5<h-e<l 
(N is an arbitrary fixed number) 

Then the integral equation (1.7) investigated in L,(O, =) (1 < p < 2) is equiva- 
lent to the following infinite system: 

Dl Cl 
1 

m 

&-zl + (&-zl)S = 6r, 6, = s F PI) dtl 
K (rl) (tl - r;,) 

(2.13) 
--m 

in the class of sequences 

WI E c (7% {%I = c(r- 1) (0<7<0.5) 

Solution of (1.7) has the form (2.14) 
cc 

a(z) = -e+vdvj + 2 (& + sCl) exp iqx, 
I-1 

f(x) = 5 P (q)einxdq 
-Do 

To prove the direct statement let us solve Eq. (1.7) and represent it in the form (2.14). 
with 

i O3 
‘l=H+(-z,) s 

F (tl) drl 
_-03 (V - Zl) K, (tl) 

(2.15) 

Conditions imposed on f (2) in the statement of the lemma are sufficient for F (q) 
to have the following property: 

F (q) = 0 (t~-l-~+~) (n+m) (2.16) 

Then, taking into account (1.5). we obtain the estimates 

DI - 0 (F’), Cl = 0 (ZP), P = aup (?ll Ys) e 0.5 (l+ 00) (2.17) 

from which (2.13) follows. The converse is proved in a similar manner. 

3. Let us write the system (2.11) in the matrix form 

[A + B(a)]S = D 

where the following notation is employed 

A = {+A B (a) = {M. s = {%)I 

G, 2l-1 = (L - ZIP* 

(3.1) 

D = {d,‘} (3.2) 
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b, 21 = f z~(& + q)-l [(CT + z&l + 2a] exp 2aizl, s22+ - cq;I+ (cont. ) 

@-,21.= (ST - zp Zz, b,, 2l-1 = f (L + ZZ) exp 2&, as1 = zl”%* 

By (2.12) we obviously have 
S E c(y), y (0.5 

L e m m a 3.1. System (3.1) is equivalent to a system of the form 

S = -A-‘B(u)S + D1, D, =A-'D (3.3) 

where A-‘B(U) is an operator which is fully continuous in c(y), y ( 0.5, A-' is a 
bilateral operator inverse to A . The following notation is introduced : 

A-l = {%I, Z2l.t = W,(- 4 K-1(5,)l’(5r- ZI)}_l (3.4) 

Z2z-1,r = w+-I(- 41' {IK‘l (MI (L - zt)}-l -- 
- {H, (- Q) 1X_-l (SF)]’ (5r -- q)“}-l 

- A-W4 = {+n>, e I m = * IQ, + ZJ-” + 2aJ zm exp 2aizJC+ (2,) 
2, 

zr Pm + ZJ H+ (- Zl) 

%I-1,m +{[H+-I(_ zJ]'_y-z;;) }""",py+~'"" (3.5) 
m m 

Elements of the matrix A-’ are constructed by solving [5] a sequence of Eqs. (1.7) 

on a semiaxis, whose right side f (2) = exp i&z, 0 < z < w. A direct check together 
with the relations (1.5) show, that the matrices A and A-r commute. Relations (1.5) 
are also employed to check the operator A-’ B (a) for complete continuity in the space 

c (I% Y < 6.5. 
From (3.5) and (1.5) we obtain the following estimate 

e n, m = 0 [ nY-lma exp (- 2&n)] (n, m-t=) (3.6) 

L e m ma 3.2. System (3.3) is equivalent to a finite system of the following linear 
algebraic equations possessing a unique solution 

N 

$3 = 2 e;, kSk + ano (n=l,...,N) (3.7) 
J& 

To prove this lemma, we shall use a system of the form 

.?,= i a,, ksk + c+, lI,*=CI,+ Ii a,, ksk (n = N j- 1, . . .) (3.8) 
k=N+l k=l 

where N is selected from the condition 

;;{k_,+l~en,kina<'<l P < 6.5) (3.8) 

The latter is completely feasible by virtue of the estimate (3.6). But then, system 
(3.8) will have a unique solution in c (a) for any element dn+ of this space. We can 
write this solution in the form 

s,= i E,mD,*, s,=fs,.,?, (3.10) 

?%=I3 

DN* = {d,,+) n=N+l,. . . EN = {e,,) (n, k = N + 1, N + 2,. . .I. E”=EE 
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Inserting (3.10) into the first N equations of (3.3) and taking the expression for d,+ 

from (3.8) into account we arrive at the system (3.7). in which 
00 a, 00 

dn” =% f 2 2 emusrod,, 
-N+l r=N+l 

03 m 

CJ,~) = z ENrn 
m=o 

(3.11) 

e nk Ose*k + 21 2 ena”8roerk (n=i,...,N) 
s==N+l t=N+l 

Unique solvability of the system (3.7) follows from the easily perceived equivalence 
of the latter system and of the integral equation (0.1) which, by Lemma 2.1 has a unique 

solution. The lemma is proved. 
In order to complete the proof of Theorem 2.1 we must establish the property (2.2). 

Let us write the system (3.1) in the form 

AS=G, j G=D -B(u)8 (3.12) 
and show that Eq. (1.7) on the semiaxis, the right side of which f(s) = ft(s) + f&z) 

satisfies (1.9), is equivalent to (3.12). Then, comparing the series (2.1) and (2,14) we 

obtain condition (2.2) by virtue of Theorem 1.1. 
Function ft(s) satisfying the conditions of the Lemma 2.3 (and hence the condition 

(1.9)). is easily constructed in terms of an element of D . Function /a(s) corresponding 
to the element B(u) 8, has the form 

f2(4 = 7 Fa(q)eiwdq, 
aiazk 

4, 
Fs(rl) = K(rl) k$l zy$q (3.13) 

Taking into account (2.13) we may conclude that f&r) satisfies the condition (1.9), 
and this completes the proof of Theorem 2.1. 

Thus, in order to construct the solution of (0.1) we must solve the finite system (3.7) 

(which has a unique solution), then determine the coefficients & and l3$ using for- 
mulas (3.8). (3.2) and (2.11) and insert them into (2.1). From Theorem 2.1 it follows 

that the solution q(z) of (0.1) has, in general, a singularity of the type (as - s2) _‘a6 

at the points z = 7+ u . 
Note. The method o,f investigating equations of the form (0.1) proposed in the pre- 

sent paper is applicable whenever the function K (u) is positive on the real alds, can be 

expanded into (1.2) and admits the representation 

K(z) = PI (I) P,-1 (I) 

Here Pk (2) are entire functions whose zeros possess the asymptotic representation 
(1.1) and whose growth indicatrices hA (0) nave the form 
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A singular integral equation is examined. This equation is generated by some mixed 
problems of the plane theory of elasticity, in particular by problems dealing with the 
contact between two bodies when friction or complete cohesion are present in the con- 

tact region. General properties of the solution of this equation are investigated. The 
initial singular equation is reduced to Ffedholm’s integral equation of the second kind 

through application of regularization by means of the solution of the characteristic equa- 

tion [1]. For the condition where the kernel is small the resolvent is found for Fredhoim’s 
integral equation of the second kind. 

Problems of interaction between a stamp and an elastic isotropic strip are examined : 
displacement of the stamp in the presence of friction between the stamp and the strip, 

and the impression of the stamp into the strip in case of complete cohesion in the region 

of contact ( l ). Solutions of these problems are obtained in the form of power series of 
a dimensionless small parameter which characterizes the relative length of the contact 

region. Boundaries for uniform and absolute convergence of these series are established. 
Examples are presented. 

1, Let us examine the following singular integral equation: 

e1 

1 

-iJ qqqsgn@-mc-- f 
5 s 

cP(BlnPI”- gp%=++p, p), rq< 1 (3.1) 

-1 -1 

*) Analogous problems on interaction of a stamp with an elastic half-plane were exam- 
ined in a number of papers by other authors (see, for example, appropriate problems and 
their reviews in @I). 


